Site hosted by Build your free website today!
hosted by tripod
Search: This Site Tripod Web by Lycos Search
Start Your Own Blog Today Build an online Photo Album

                        Zeno 's Paradoxes

( Quoted from


Zeno 's Paradoxes Solutions

Obviously the Zeno conclusions are against our experience. But we are curious about what is wrong with the deduction. The paradoxes address the basic three ideas of space, time and motion. In order to nock down the wrong notion, we must be right first, that is the idea of discussing the paradoxes. But I really doubt how many of us have the right ideas of the three, so the paradoxes may remain defiant.

The first two paradoxes of Dichotomy and Achilles are of the same quality, from the math point of view, the two series set converge at two points, one is at the beginning and the other at the end. And the conclusion comes from that since the runner can not finish counting the  series set of infinite midpoints, so he can not find the first midpoint to start or the last point to finish, then he will never be able to start or finish. 

The assumption behind the deduction is that he must find out the final midpoint which we will never be able to pinpoint out. But this is not necessary because space is not made up of points. Space only contain points. Every step of man is a set of infinite points, so a infinite set can cover another infinite set, as long as his first step can cover (not pinpoint out) the infinite part or subset of midpoints, or any midpoint can be accounted by the covering, only the other finite part of set of midpoints is left out at the first step or last step, the set of midpoints can be fully covered by the steps.

The concept of infinite set is misapplied to the case because this is a integer problem, the step and distance should be treated as integers. So the question becomes how many integers unit of step to cover the distance. 


1,We don't have to infinitely divide space to cover space. 

2,We cover space, not points. We have no experience of a point.

3,The measurement of unit of space can be very small but it must contain some space, points are not space, therefore we don't have to cover each individual point. We only have to cover between points.  

4,The space made up of points are not continuous because the next point is unknown.

首页/Home  文心目录/Article Categories